正在阅读:Google AI研发新型癌症检测算法,乳腺癌检测准确率可达99%

Google AI研发新型癌症检测算法,乳腺癌检测准确率可达99%

2018-10-15 09:04:16来源:猎云网 关键词:谷歌医疗人工智能阅读量:25348

导读:圣地亚哥海军医疗中心的研究人员,以及致力于的Google人工智能部门研究人员,目前开发出了一种可期的解决方案,该解决方案采用癌症检测算法,可自动评估淋巴结活检。
  【中国智能制造网 企业动态】有50万人因乳腺癌死亡,他们当中有90%都是转移性肿瘤。圣地亚哥海军医疗中心的研究人员,以及致力于的Google人工智能部门研究人员,目前开发出了一种可期的解决方案,该解决方案采用癌症检测算法,可自动评估淋巴结活检。
 
  转移性肿瘤,指的是癌细胞脱离其原始组织,通过循环或淋巴系统穿过身体,并在身体的其他部位形成新的肿瘤,这是众所周知非常难以检测的一种肿瘤。2009年,在波士顿,两家医疗中心对102名乳腺癌患者进行的一项研究发现,有四分之一的患者都由于医疗过程中“照护程序”失败,而受到了不同程度的影响,例如可能是因为身体检查不充分和诊断检查不完整。
 
  有50万人因乳腺癌死亡,他们当中有90%都是转移性肿瘤。圣地亚哥海军医疗中心的研究人员,以及致力于的Google人工智能部门研究人员,目前开发出了一种可期的解决方案,该解决方案采用癌症检测算法,可自动评估淋巴结活检。
 
  他们的AI系统,又被称为淋巴结助手(LYNA),一篇发表在《美国外科病理学》杂志上,题为《基于人工智能的乳腺癌淋巴结转移检测》的论文中对该系统有所描述。在测试中,它的接收器工作特性(AUC)下面积(一种检测精度的测量)能达到99%,这是病理检验师所做不到的。根据近的一项评估,病理检验师在时间限制下有62%的时间发现不了个别载玻片上的小转移现象。
 
  该论文的作者写道:“人工智能算法可以详尽地评估幻灯片上的每个组织切片。我们提供了一个框架,以帮助实践中的病理学家评估这些算法,并把它们纳入自己的工作流程(类似于病理学家如何评估免疫组织化学结果这样的内容)。”
 
  LYNA模型是一种开源的基于Inception-v3的图像识别深度学习模型,在斯坦福的ImageNet数据集拎已经被证明可以实现78.1%的准确率。正如研究人员所解释的那样,它需要一个299像素的图像(Inception-v3的默认输入大小)作为输入值,然后在像素大小的级别上显示出肿瘤的轮廓,并且在训练过程中,得到标签——即预测该组织切片是“良性”还是“肿瘤”,并调整模型的算法权重以减少误差。
 
  该团队通过将LYNA模型置于正常切片比肿瘤切片为4:1比例的这样一个训练环境中,并提高训练过程的“计算效率”,改进了他们先前公布的算法,这使得通过该算法可以“看到”更多的组织多样性。此外,他们还对活检玻片扫描的变化进行了标准化,他们认为这可以将模型的性能提升到更高的程度。
 
  研究人员将LYNA模型置于2016年淋巴数据集中(Camelyon16)的癌症转移数据环境里进行训练,该数据集来自于Radboud大学(Nijmegen, the Netherlands)和Utrecht大学(Utrecht, the Netherlands)的医学中心,里面包含了399个淋巴结切片的玻片图像,以及来自20名患者的108张图像。它对270个载玻片(160个正常,110个肿瘤)进行了训练,并使用了两个评估集——一个由129个载玻片组成,另一个由108个载玻片组成,来进行性能评估。
 
  在测试中,LYNA模型实现了99.3%的载玻片级精度。当调整模型的灵敏度阈值,来检测每张载玻片上的所有肿瘤时,其灵敏度为69%,能准确识别评估数据集中的全部的40个转移灶,没有任何误报。此外,它不受载玻片中的人工制品的影响,例如气泡,加工不良,出血和过度涂抹等现象。
 
  LYNA模型并不,它偶尔会错误地识别巨细胞,生发癌和骨髓,他们来源于被称作组织细胞的白细胞,但在评估相同载玻片时,它的表现的确比病理学家们更好。在谷歌AI和Verily(谷歌母公司Alphabet的一个生命科学子公司)发表的第二篇论文中,该模型检测淋巴结转移的时间,与一个由六位认证的病理学家组成团队相比的话,缩短了一半。
 
  未来的工作将围绕调查该算法是否能提率或诊断准确性。
 
  研究人员写道,“LYNA模型与病理学家相比,监测肿瘤敏感度水平更高。这些技术可以提高病理学家的生产力,减少肿瘤细胞形态学检测方面的假阴性数量。”
 
  Google已广泛投资于人工智能医疗保健的相关应用程序。今年春天,Mountain View公司的Medical Brain团队声称创建了一个AI系统,可以预测再入院的可能性,并且他们在6月份使用它来预测了两家医院的死亡率,准确率达90%。2月份,谷歌和Verily的科学家创建了一个机器学习网络,可以准确地推断出一个人的基本身体信息,包括他们的年龄和血压,以及他们是否有患心脏病等重大心脏类疾病风险。
 
  DeepMind,Google在伦敦的人工智能研究部门,参与了几项与健康相关的人工智能项目,其中包括美国退伍军人事务部正在进行的一项试验,旨在预测患者在住院期间病情的恶化实践。此前,它与英国国家健康服务中心合作开发了一种可以寻找早期失明迹象的算法。今年早些时候,一篇发表于Medical Image Computing & Computer Assisted Intervention会议上的论文中,DeepMind的研究人员表示,他们已经开发出一种能够以“近乎人性化”的方式对CT扫描进行划分的AI系统。
 
  (原标题:Google AI研发新型癌症检测算法,乳腺癌检测准确率可达99%)
我要评论
文明上网,理性发言。(您还可以输入200个字符)

所有评论仅代表网友意见,与本站立场无关。

  • 中国生成式人工智能用户规模达5.15亿人,普及率36.5%

    《生成式人工智能应用发展报告(2025)》显示,截至2025年6月,我国生成式人工智能用户规模达5.15亿人,普及率为36.5%。上半年,国产生成式人工智能产品取得显著进步,在春节期间成为社会关注热点,推动生成式人工智能快速渗透。
    人工智能生成式人工智能
    2025-10-20 09:07:04
  • 人工智能和物联网如何协作以实现更智能的技术

    人工智能与物联网的融合代表着科技发展的新方向。物联网通过分布在各处的传感器、设备和网络基础设施,持续生成海量的实时数据。而人工智能则通过机器学习与深度学习算法,对这些数据进行分析、建模与优化。
    人工智能物联网
    2025-10-20 10:57:54
  • OpenAI联合创始人:人工智能代理真正发挥作用还需10年

    OpenAI联合创始人预估,要系统解决上述所有问题,大约还需要十年时间。尽管众多投资者将2025年称为“智能体之年”,但现实发展仍面临显著挑战。广义上,AI智能体被定义为能够自主执行任务的虚拟助手,具备问题拆解、方案规划与自主实施的能力。
    OpenAI人工智能
    2025-10-20 10:58:05
  • 物联网和 Agentic AI 助力未来智能医院

    随着物联网(IoT)与新一代智能体人工智能(Agentic AI)的融合,这一复杂体系正在被重新定义。越来越多的医院开始引入基于实时数据的智能运营模式,使医疗体系逐步从“经验驱动”走向“数据驱动”,甚至是“自主优化”的新阶段。
    医疗应用方案人工智能
    2025-10-17 13:23:02
  • 快讯|HDL与海康威视达成战略合作;特斯联与新华三达成战略合作

    中国智能控制品牌河东科技HDL与安防企业海康威视宣布达成战略合作,双方产品实现互联互通,为海外用户提供更完整的智能生活解决方案;特斯联与新华三正式宣布达成战略合作,双方将集中优势资源,围绕AIoT算力平台打造及异构算力生态建设进行深度合作......
    AIoT算力人工智能
    2025-10-17 11:27:16
  • 网信办、发改委:政务领域人工智能大模型13大典型应用场景

    政务部门可围绕政务服务、社会治理、机关办公和辅助决策等工作中的共性、高频需求,因地制宜、结合实际,选择典型场景进行人工智能大模型探索应用。
    人工智能大模型
    2025-10-17 08:30:05
版权与免责声明:

凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。

本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。

鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。

不想错过行业资讯?

订阅 智能制造网APP

一键筛选来订阅

信息更丰富

推荐产品/PRODUCT 更多
智造商城:

PLC工控机嵌入式系统工业以太网工业软件金属加工机械包装机械工程机械仓储物流环保设备化工设备分析仪器工业机器人3D打印设备生物识别传感器电机电线电缆输配电设备电子元器件更多

我要投稿
  • 投稿请发送邮件至:(邮件标题请备注“投稿”)1271141964.qq.com
  • 联系电话0571-89719789
工业4.0时代智能制造领域“互联网+”服务平台
智能制造网APP

功能丰富 实时交流

智能制造网小程序

订阅获取更多服务

微信公众号

关注我们

抖音

智能制造网

抖音号:gkzhan

打开抖音 搜索页扫一扫

视频号

智能制造网

公众号:智能制造网

打开微信扫码关注视频号

快手

智能制造网

快手ID:gkzhan2006

打开快手 扫一扫关注
意见反馈
我要投稿
我知道了