12月16日消息,日前,由国际人工智能顶会NeurIPS 与 Facebook AI联合举办的图像相似匹配竞赛ISC2021落下帷幕。本次比赛共有1635支参赛队伍参加,来自蚂蚁集团的TitanShield Team(titanshield2)斩获图像表征赛道冠军。
据悉,此次夺冠团队采用的技术方案是由蚂蚁集团独立自研的、“基于特征兼容自监督学习框架”的预训练模型,能够针对性地解决内容安全风控领域常见的敏感信息更迭速度快、风控模型训练不及时等问题。作为可信AI技术研究及应用中的一环,该技术上线后可降低80%的图像对抗风险,将有助于极大地提升在内容安全等相关应用领域中的AI鲁棒性(Robustness)。
作为人工智能下一阶段快速发展的瓶颈所在,安全和可信性决定了人工智能未来三十年的发展速度和应用深度;而AI的鲁棒性,即抗打击能力及稳定性,则成为了人工智能的第一场大考。“如果抵挡不住攻击,识别结果不可信,那么AI模型不仅失去了它存在的意义,还会成为另一个风险敞口”,蚂蚁集团资深技术专家博山表示。
据悉,此次比赛中,夺冠团队所采用的“基于特征兼容自监督学习框架”的预训练模型,在图像识别领域,极大地缓解和应对了上述问题。首先,该技术能够基于公开数据集进行预训练,帮助AI提前完成同类风险预演。其次,在传统的AI识别中,模型识别依赖人工投喂标注了“特征”的样本;例如,模型在识别熊猫图片前,需要先“学习”熊猫的特征——“眼部有黑色毛发”、“常与竹子一同出现”等等。而借助“自监督学习”技术,该模型可以通过自主学习抓取“特征”,降低70%标注量,训练时间也从原本的一周缩短至3天。同时,创新的“特征兼容”方案,能够实现在两个业务场景或两家企业间,借助“特征”信息的兼容共享,实现风险联防。
据悉,该模型及相关技术作为蚂蚁集团内容安全风控决策引擎的重要组成部分,目前已在支付宝内容安全场景中全面上线,可整体降低80%的图像对抗风险。
版权与免责声明:
凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。
本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。
鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。