正在阅读:深度解析大数据在金融行业的典型应用方向

深度解析大数据在金融行业的典型应用方向

2017-02-17 09:28:30来源:36大数据 编辑:沐子飞 关键词:大数据金融数据挖掘阅读量:36115

导读:随着互联网新金融模式的兴起,传统的银行金融业面临着诸多挑战。而大数据技术的发展和广泛应用,无疑是提供了一座价值的“金矿”。
  【中国智能制造网 市场分析】随着互联网新金融模式的兴起,传统的银行金融业面临着诸多挑战。而大数据技术的发展和广泛应用,无疑是提供了一座价值的“金矿”,借助大数据技术,将分散在金融企业服务网络与IT系统中的海量信息与基于业务驱动的外部数据源融合,并结合金融行业的特点,以金融业务为核心,提升客户体验和客户价值、优化运营流程、预测营销效果、提升经营管理水平。

深度解析大数据在金融行业的典型应用方向
 
  背景
 
  金融企业是大数据的先行者,早在“大数据”一词兴起之前,金融行业的数据量和对数据的应用探索就早已经“大数据”了。而今大数据技术和应用日趋深入,大数据理念渐入人心,金融机构在保有原有数据技术能力的同时,通过内部传统数据和外部信息源的有效融合,能够在金融企业内部的客户管理、产品管理、营销管理、系统管理、风险管理、内部管理及优化等诸多方面得到有效提升。接下来笔者介绍几种大数据的典型应用方向。
 
  构建360度全景客户视图
 
  对于金融企业而言,客户画像应用主要分为个人客户画像和企业客户画像两个应用方向。个人客户画像包括人口统计学特征、消费能力数据、兴趣数据、风险偏好等;企业客户画像包括企业的生产、流通、运营、财务、销售和客户数据、相关产业链上下游等数据。
 
  传统的客户画像重点在于建立统一客户视图,将以业务为核心的IT系统数据整合,主要覆盖交易、服务、风险、权益等业务相关层面的数据。然而值得注意的是,金融企业拥有的客户等相关信息分散且不全面,分散是指金融企业内部数据往往分散在各个业务系统,彼此之间相互独立,又各有关联,整合难度大;不全面是指客户数据往往是由金融企业自己建立的、围绕金融交易展开的数据,因此仅仅基于企业内部拥有的数据往往难以得出理想的结果。
 
  比如依照银行传统的分析,某位持卡4年的信用卡持卡人,月均刷卡次数以及消费稳定,极少打客服电话,应该是一位满意度较高流失风险较低的客户。但该客户却经常在社交网站、微博和微信上抱怨该行信用卡使用不便,合作商户优惠少,并且其工资卡和信用卡不在同一家银行,还款不方便,准备近期重新办理一张工资卡所在银行信用卡,所以该持卡人流失风险较高,需要立刻进行相关保留客户措施。所以金融机构不仅需要综合分析自身内部业务系统所采集到的数据,更应整合外部更多的数据,以扩展对客户的了解。
 
  应用大数据技术进行数据整合和拓展分为两种形式,其一是内部拓展,将以前难以处理的半结构化和非结构化的票据影像、客服中心语音疾苦、访谈记录等内部数据进行结构化解析;其二是结合银行自身的业务特征,引入与业务高度相关的外部数据源。通过整合和分析全面的客户数据,将社交数据和金融企业内部数据有机融合,可以更加清晰真实的还原客户全景视图,使得银行更加了解客户。对于行为信息的扑捉,为营销、服务都创造了可能性。
 
  构建更全面的信用评价体系
 
  风险控制一直是金融行业的核心痛点,也是金融企业的核心竞争力,而信用评价体系的完善可以有效帮助金融企业降低信贷审批成本,并控制信贷风险。不能以单纯的贷款标准来去衡量一个客户能否贷款、能贷到多少款项,而必须融合外部交易信息和深入到行业中用行业标准衡量。大数据技术从以下三个方面帮助金融机构建立更为的信用评价体系:
 
  (1)构建完备的信用数据平台:基于企业传统数据库丰富的客户基础信息、财务及金融交易数据的积累,融合从社交媒体、互联网金融平台获取的客户信用数据,构建全面客户信用数据库。
 
  (2)融合金融企业专业量化的信用模型和基于互联网的进货、销售、支付清算、物流等交易积累的信用和对企业的还款能力及还款意愿的评估结论,以及行业标准还原真实经营情况,从而评判信用情况。利用大数据技术,对海量客户信用数据进行分析,建立完善的信用评价模型。
 
  (3)应用大数据技术进行信用模型的分布式计算部署,快速响应,评价,快速放款,实现小微企业小额贷款和信用产品的批量发放。
 

我要评论
  • 人工智能+大数据:2025年它们如何塑造企业

    “2025 年商业中的人工智能与大数据”如今已成为竞争优势的代名词。人工智能 (AI) 与大数据的融合正在通过预测分析、个性化服务和自动化运营重塑全球经济的各个领域。
    人工智能大数据
    2025-09-16 10:29:40
  • 中国大数据规模未来5年增速世界第一 全球占比10%

    中国大数据市场表现格外亮眼,预计2029年中国大数据IT支出规模为730.2亿美元,全球占比约10%。
    大数据大数据技术
    2025-09-12 11:44:02
  • 合肥都市圈要素市场化配置综合改革试点实施方案

    发挥安徽省数据交易所枢纽作用,推进数据流通交易,建设合规高效的数据流通交易平台,发挥数据产业促进、交易技术创新、数商生态合作等功能,打造全国一流、特色鲜明的区域性数据交易场所。
    要素市场化配置改革数据挖掘
    2025-09-12 09:37:09
  • 金融支持新型工业化,七部门联合发文提出18项举措!

    到2027年,支持制造业高端化智能化绿色化发展的金融体系基本成熟,产品更加丰富,贷款、债券、股权、保险等各类金融工具在有效防范交叉性金融风险前提下联动衔接更加紧密,服务适配性有效增强。
    金融新型工业化
    2025-08-06 11:43:28
  • 新华三与广东电信深化战略合作 共拓数字经济新蓝海

    多年来广东电信与新华三一直保持着良好的合作关系,取得丰硕成果。期待双方在传统云网合作基础上,共同探索先进算力网络建设,协力深耕粤港澳大湾区数字化沃土。
    数字经济大数据
    2025-07-11 11:40:07
  • 物流智能转型新引擎:DeepSeek+物流

    DeepSeek 物流不仅是技术的革新,更是城市发展的重要推动力。它通过智能化手段提升物流效率、优化资源利用、减少环境影响,并为智慧城市建设提供支撑。未来,随着AI技术的不断进步,物流行业将迎来更深刻的变革。
    物流大数据服务平台
    2025-04-30 10:11:15
版权与免责声明:

凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。

本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。

鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。

不想错过行业资讯?

订阅 智能制造网APP

一键筛选来订阅

信息更丰富

推荐产品/PRODUCT 更多
智造商城:

PLC工控机嵌入式系统工业以太网工业软件金属加工机械包装机械工程机械仓储物流环保设备化工设备分析仪器工业机器人3D打印设备生物识别传感器电机电线电缆输配电设备电子元器件更多

我要投稿
  • 投稿请发送邮件至:(邮件标题请备注“投稿”)1271141964.qq.com
  • 联系电话0571-89719789
工业4.0时代智能制造领域“互联网+”服务平台
智能制造网APP

功能丰富 实时交流

智能制造网小程序

订阅获取更多服务

微信公众号

关注我们

抖音

智能制造网

抖音号:gkzhan

打开抖音 搜索页扫一扫

视频号

智能制造网

公众号:智能制造网

打开微信扫码关注视频号

快手

智能制造网

快手ID:gkzhan2006

打开快手 扫一扫关注
意见反馈
我要投稿
我知道了