正在阅读:数据分析Jim:中国数据分析市场正在爆发

数据分析Jim:中国数据分析市场正在爆发

2017-04-12 09:43:11来源:云科技时代 编辑:沐子飞 关键词:大数据物联网数据分析阅读量:28438

导读:在谈到全新新数据和商业分析趋势时,Jim Goodnight就SAS公司的业务来说,认为有三大趋势在拉动数据分析市场的发展,分别是物联网、新型分析和合作伙伴生态。
  【中国智能制造网 智造快讯】在2017年4月2-5日美国奥兰多城市举办的2017 SAS Global Forum论坛上,大的独立软件公司之一、专注于数据和商业分析超过40年的美国SAS公司创始人兼CEO、2011年被Forbes杂志誉为“数据分析”的Jim Goodnight对笔者表示,SAS在中国市场在过去20多年的发展一直比较平稳,但过去几年却取得了爆发式增长。

“数据分析” Jim Goodnight
 
  SAS公司早起源于美国北卡罗来纳州立大学1966年的一项开发数据分析软件用于农业数据的研究。40年后的今天,根据IDC的统计,SAS占和预测分析市场31.6%的份额,比前10名中其它9家相关厂商营收的总合还要多。2016年,SAS在超过30种各类市场调查公司的报告中占据地位,这包括分析、数据管理、数据整合、数据质量、数字营销、和预测分析、客户智能、零售分析、商业智能、安全解决方案等。
 
  可以说在过去40年的时间里,SAS见证了数据分析、商业分析和大数据市场从无到有、从小到大的发展历程。2016年,SAS在的业务继续保持稳步增长, 2016年营收达32亿美元,增长主要来自于分析平台、云计算、反欺诈和安全智能解决方案,而且是在所有区域都实现了营业额的增长,特别是亚太区和拉丁美洲区成为增长快的大区。
 
  数据分析三大趋势
 
  在谈到全新新数据和商业分析趋势时,Jim Goodnight就SAS公司的业务来说,认为有三大趋势在拉动数据分析市场的发展,分别是物联网、新型分析和合作伙伴生态。
 
  其中,物联网数据分析被视为下一个数据分析的金矿,已经给SAS公司带来了高速增长的业务机会。目前,SAS业务按行业来看的话,营收前三分别是银行(27%)、政府(15%)和专业服务(12%),而电信通讯(6%)、制造(6%)、医疗(5%)、零售(4%)等被视为潜在大数据及分析行业市场却只占了SAS年度营收比例的个位数,说明这些行业还存在巨大的市场空间。
 
  能拉动电信通讯、制造、医疗和零售等潜在大数据及分析市场的一个抓手就是物联网。物联网作为连接底层传感器设备与互联网的物理信息空间连接器,能够为电信通讯、制造、医疗和零售等行业带来的视角,让企业管理者能深入到运营线实时掌握前沿动态,把前端实时数据与后台运营历史数据结合,就能产生巨大的商业价值。
 
  Jim Goodnight认为传感器数据分析是一个巨大的机会,汽车里已有传感器每天都在产生海量的数据。SAS公司在2016年推出了ESP实时流数据处理引擎,专门适用于靠近数据产生源的传感器数据实时分析,可每秒处理上百万个事件的分析与处理,通过内存计算可实现近乎实时的流数据分析。自2016年第四季度推向市场以来,已经为SAS公司带来了源源不断的物联网业务。
 
  在SAS Global Forum 2017上,SAS与思科合作推出了业界经过Cisco Validated Design(思科验证设计)的Edge-to-Enterprise(边缘到企业)物联网分析参考框架。SAS EPS现在可运行在Cisco工业集成服务829路由器上,在工厂、卡车等靠近传感器的地方就近分析实时数据。2016年,SAS专门在底特律设立了办公室以支持在汽车制造行业中的业务增长。
 
  在新型分析方面,云分析是一个重要的数据分析领域。SAS耗资10亿美金开发了面向云计算现代计算架构的云分析服务Viya,并于2016年开始推向市场。在SAS Global Forum 2017上SAS推出了全线的Viya产品,包括一系列可视化分析平台,把SAS Viya与传统软件版本的SAS 9结合起来就能形成一个企业内无处不在的数据分析环境。SAS Viya还提供了大量机器学习和人工智能功能,以满足当前日益增长的企业智能分析需求。
 
  SAS Result(Result-as-a-Service)是另一个新型的云分析产品。这实际上不是一个产品,而是基于项目的专业服务。SAS公司CTO Oliver Schabenberger在接受笔者采访时表示,对于客户来说不再需要自己去学习、掌握、理解和运用SAS公司的各种数据分析软件产品,而只需要向SAS Result团队提出自己的数据分析需求和数据,由SAS Result数据分析团队在后端完成所有的数据分析和处理后,把结果返回给客户即可。如果涉及到相应的持续云服务等IT需求,也可以选择托管给SAS公司。
 
  自云分析产品推出以来,已经为SAS在2016年带来了9%的业务增长。随着2017年SAS推出更多Viya产品,有望进一步带来更高回报的营收。Oliver介绍说,SAS Viya可运行在AWS之上以公有云方面运营和部署,也可以在企业内部部署在Cloud Foundry私有云之上为企业内部服务。
 
  2017年,SAS将继续在包括分析、可视化、数据管理、客户智能、风险和欺诈等在内的领域持续,并在SAS Viya、人工智能、云计算和物联网等领域进行大量投入。在SAS Global Forum 2017上,Jim Goodnight和Oliver还多次演示了利用AWS Echo智能语音音箱来与数据分析报表交互,这将创造新的数据分析互动形式。
 
  推动数据分析市场增长的第三大动力来自合作伙伴生态。随着大数据的崛起和数据分析市场的高营收前景,越来越多的独立软件商、系统集成商和增值分销商开始进入数据分析业务。Jim Goodnight表示,2016年SAS销售增长的30%由合作伙伴贡献,他们满足了客户的个性化需求和终用户需求。SAS合伙伙伴生态形成规模化发展,从一个侧面说明了数据分析生态已经达到了一定的规模,开始成为拉动市场增长的主力。
 
  企业大数据分析仍需要时间
 
  尽管SAS的高速发展向市场传达了一个积极的信号,但在另一方面大数据缓慢给企业带来商业价值的现象也不容忽视。
 
  SAS的一份调查显示,近几年大数据取得了巨大的发展,但大数据仍然难以给企业带来实际的商业价值。SAS佳实践副总裁Jill Dyche认为,现在所有的企业都专注于把大数据收集和存储到大数据平台上,而忘记了其实分析才能真正给大数据带来商业价值。由于大数据的收集、处理和准备等前期阶段耗费的时间过长、成本过高,导致企业高层开始失去耐心,这是当前大数据产业面临的困境。
 
  对于数据分析实践来说,如果想要获得企业高层以及各业务的认可,就要建立全员数据分析文化,而这是一个过程。尤其是当企业各层管理者的KPI里并没有涉及数据分析或数据分析无法影响这些KPI的时候,企业实际上很难接受在数据分析方面的投入,更不用说懂得数据分析语言的专业人才少之又少。
 
  Jill建议企业在实践数据分析的时候可参考三大佳实践:一是把数据分析当成一个业务而看待,而不仅是运营或管理工具,要让数据分析与业务紧密结合而成为业务的一部分,这样就能真正为企业创造价值;二是让数据分析为企业业务战略服务,让数据分析可以深入影响企业的战略,从战略高度获得高层的认可,这远比在基层开展一个又一个小规模的数据分析更有效率;三是要把数据分析与数据管理分开,数据分析与数据管理其实是两个不同的领域,数据管理涉及到大数据等偏技术层面的专业知识和技能,而数据分析其实是要所业务语言和问题与数据结合,通过数据分析解决业务问题,因而数据分析不能等同于数据管理。
 
  在谈到企业数字化转型的时候,Jill认为IT组织和厂商的数字化转型更为重要也更为关键。IT组织和厂商作为企业数字化的技术合作伙伴,如果自身转型都不能成功,又何谈帮助企业成功完成数字化转型呢?现在,很多传统IT厂商在向现代化的数字化技术过程的时候都出现了身份危机,很难在新的时期成功完成自身产品、服务和解决方案的创新、颠覆与转型,比如PC厂商就在这一波数字化大潮中面临巨大的挑战。
 
  联想分析总监鲍若愚在SAS Global Forum 2017上分享了联想在数据分析方面的初步实践,鲍若愚认为联想的数据分析还处于起步阶段,联想数据分析团队还在争取获得联想内部各产品线和高层的认可。联想数据分析团队目前位于新加坡,在联想C级别高管中还无一人负责数据分析,这说明数据分析远未进入联想的战略管理视野。中国企业特别是中国IT企业在向数字化转型的过程中,还有很长的路要走。
 
  2017年1月,工信部公布了《大数据产业发展规划(2016-2020年)》,提出了到2020年的发展目标:大数据相关产品和服务业务收入突破1万亿元,年均复合增长率保持30%左右。此外,还将培育一批专业化数据服务创新型中小企业、10家的大数据核心和500家大数据应用及服务企业,初步形成大数据产业体系。
 
  随着中国大数据市场的全面起动以及中国企业向“互联网+”的数字化转型继续推进,SAS公司期待在中国市场迎来更大的发展。“预期SAS中国市场今年增长率保持两位数(百分比)”,已经74岁的Jim Goodnight对中国的数据分析市场非常有信心。
 
  原标题:数据分析:中国数据分析市场正在爆发
我要评论
  • 人工智能和物联网如何协作以实现更智能的技术

    人工智能与物联网的融合代表着科技发展的新方向。物联网通过分布在各处的传感器、设备和网络基础设施,持续生成海量的实时数据。而人工智能则通过机器学习与深度学习算法,对这些数据进行分析、建模与优化。
    人工智能物联网
    2025-10-20 10:57:54
  • 从原始数据到实时洞察:释放物联网分析的潜力

    部署物联网传感器和连接只是第一步。真正的挑战在于将原始数据转化为可操作的洞察。即使是规划最完善的网络,如果没有坚实的分析层,也无法带来投资回报率。
    物联网物联网传感器
    2025-10-14 13:25:37
  • AI、物联网、大数据如何重塑现代商业

    智慧商业的真正潜力在于多种技术的融合应用,而非单点突破。当AI、物联网、大数据和云计算等技术深度融合时,它们催生出全新的商业模式。
    物联网人工智能区块链
    2025-09-24 09:11:12
  • 人工智能+大数据:2025年它们如何塑造企业

    “2025 年商业中的人工智能与大数据”如今已成为竞争优势的代名词。人工智能 (AI) 与大数据的融合正在通过预测分析、个性化服务和自动化运营重塑全球经济的各个领域。
    人工智能大数据
    2025-09-16 10:29:40
  • 人工智能与数据分析如何重塑数字营销的未来

    随着企业加速拥抱这些技术,营销策略正逐步从单一渠道的被动响应,演变为更复杂、更智能化和更具前瞻性的体系。这一转变不仅推动了营销个性化与自动化的深化,也为2025年及以后数字经济时代的变革性增长奠定了基础。
    人工智能数据分析数字营销
    2025-09-16 10:26:48
  • 中国大数据规模未来5年增速世界第一 全球占比10%

    中国大数据市场表现格外亮眼,预计2029年中国大数据IT支出规模为730.2亿美元,全球占比约10%。
    大数据大数据技术
    2025-09-12 11:44:02
版权与免责声明:

凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。

本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。

鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。

不想错过行业资讯?

订阅 智能制造网APP

一键筛选来订阅

信息更丰富

推荐产品/PRODUCT 更多
智造商城:

PLC工控机嵌入式系统工业以太网工业软件金属加工机械包装机械工程机械仓储物流环保设备化工设备分析仪器工业机器人3D打印设备生物识别传感器电机电线电缆输配电设备电子元器件更多

我要投稿
  • 投稿请发送邮件至:(邮件标题请备注“投稿”)1271141964.qq.com
  • 联系电话0571-89719789
工业4.0时代智能制造领域“互联网+”服务平台
智能制造网APP

功能丰富 实时交流

智能制造网小程序

订阅获取更多服务

微信公众号

关注我们

抖音

智能制造网

抖音号:gkzhan

打开抖音 搜索页扫一扫

视频号

智能制造网

公众号:智能制造网

打开微信扫码关注视频号

快手

智能制造网

快手ID:gkzhan2006

打开快手 扫一扫关注
意见反馈
我要投稿
我知道了